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Abstract
The free Schrödinger equation has localized constant velocity solutions ψv

of the form ψ = f (r − vt) eiλt with λ being a constant. These solutions
are eigenvectors of a momentum operator p̃ such that p̃ψv = mvψv. The
wavepacket, while not normalizable, is both localized and in a definite
momentum state. The ψv are orthogonal in the inner product space 〈φ|r2|ψ〉,
and the p̃ operator is symmetric therein. We discuss whether these ψv can act
as basis states rather than the usual plane waves.

PACS number: 03.65.Ge

1. Introduction

There has long been interest in localized solutions of Schrödinger’s equation

(ih̄∂t + h̄2∇2/2m)ψ = 0 (1)

for modelling particles. Most attention has been given to the normalizable (finite energy)
localized solutions, of which the best known are those with Gaussian envelopes, but these
spread out over time. There are also non-dispersive localized solutions which have been given
less attention: constant velocity wavepackets were discussed by Besieris et al [1] and Barut
[2]. A constant acceleration wavepacket [3], sometimes called the Airy packet, is well known.
These non-dispersive solutions have the drawback that they are not normalizable.

Here we introduce non-dispersive wavepacket solutions ψv of (1) with constant velocity
v and amplitude inversely proportional to the distance from the wavepacket centre. The main
result of this paper is to show that these ψv are eigenfunctions of a momentum operator p̃,
implying that a particle can be in a definite state of momentum while still being localized,
in contrast to the plane wave eigenfunctions of the usual momentum operator (−ih̄∇). The
wavefunctions ψv are similar to those introduced in [1] (see (2.7) therein):

ψv = sin(mc|r − vt |/h̄)

|r − vt | eimv·(r−vt)/h̄ e−im(c2−v2)t/2h̄ (2)

1751-8113/08/265305+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/26/265305
mailto:s.mosley4@ntlworld.com
http://stacks.iop.org/JPhysA/41/265305


J. Phys. A: Math. Theor. 41 (2008) 265305 S N Mosley

with v ≡ |v| and c is an arbitrary parameter having dimension velocity, which can take any
finite value. The extent of the wavefunction (2) about its centre (r = vt) is of order h̄/mc,
and as the Compton wavelength of a particle is λ = 2πh̄/mc where c is the velocity of light,
we are minded to put c equals light velocity as suggested by the notation. (Any notion of
particle size is problematic in quantum theory, but the Compton wavelength λ can be thought
of as the minimum extent of a particle: to confine it within a distance smaller than λ results
in additional particle, anti-particle pair production.) That ψv = f (r − vt) e−im(c2−v2)t/2h̄ is
a clear statement of its non-dispersive property, the exponential being merely a time phase
factor over all space.

To verify that (2) is a solution of (1), note the identities (we from now on put h̄ = 1)(
∂t + v · ∇ +

im(c2 − v2)

2

)
ψv = 0 (3)

(∇ − imv)ψv = eimv·(r−vt) e−im(c2−v2)t/2∇
[

sin(mc|r − vt |)
|r − vt |

]

(∇ − imv)2ψv = eimv·(r−vt) e−im(c2−v2)t/2∇2

[
sin(mc|r − vt |)

|r − vt |
]

= −m2c2ψv,

(4)

the identity (3) follows from ψv = f (r−vt) e−im(c2−v2)t/2. Expanding out (4) and substituting
into (3) we obtain

(∇2 − 2imv · ∇ − m2v2)ψv = −m2c2ψv(
∇2 + 2im

(
∂t +

im(c2 − v2)

2

))
ψv = −m2(c2 − v2)ψv

(∇2 + 2im∂t)ψv = 0

which is (1). A more direct method of verifying that ψv is a solution of (1) is to start with the
stationary (v = 0) wavepacket

ψ0 = sin(mcr)

r
e−imc2t/2 (5)

which is the spherical wave solution to Schrödinger’s equation, it can be thought of as plane
waves from all directions converging on and diverging from the origin. Then ψv may be
obtained directly from ψ0 by a Galilei transformation Gv which is defined [4]:

Gvψ(r, t) ≡ ψ(r − vt, t) eimv·r−imv2t/2. (6)

Given a solution ψ of (1) then the boosted wavefunction ψ ′ = Gvψ is also a solution [4], and
it is easily checked that

Gvψ0 = ψv.

As already mentioned the ψv are not normalizable: consider the inner product of two
wavepackets ψv, ψv′ momentarily coinciding at time t = 0

〈ψv′ |ψv〉 =
∫

(sin(mcr) e−imv′ ·r/r)(sin(mcr) eimv·r/r) d3r

= π

∫∫
(1 − cos(2mcr)) eim|v−v′ |r cos θd(−cos θ) dr

= π

∫
(1 − cos(2mcr))

[
2

sin(m|v − v′|r)
m|v − v′|r

]
dr

2
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= π

m|v − v′|
∫ [

2
sin(m|v − v′|r)

r
− sin([2mc + m|v − v′|]r)

r

+
sin([2mc − m|v − v′|]r)

r

]
dr

= π

m|v − v′|
π

2

[
2 sgn(m|v − v′|) − sgn([2mc + m|v − v′|])

+ sgn([2mc − m|v − v′|])
]

= π2

m|v − v′| = π2

|p − p′| (7)

where in the final line of working we have put sgn([2mc − m|v − v′|]) = 1 which holds for
|v|, |v′| < c, bearing in mind that the Schrödinger equation is only valid for non-relativistic
velocities. The 〈ψv′ |ψv〉 is constant in time, so that two wavepackets which momentarily
coincide have inner product which is a finite number (for v �= v′) however far apart the
wavepackets are separated (either before or after the wavepackets have coincided). This
linkage between two coinciding wavepackets or particles is a well-known quantum feature.
When v = v′ then 〈ψv|ψv〉 is infinite, though less singular than for the plane wave case.

The only free parameter in ψv is v itself which makes us curious as to whether ψv is an
eigenfunction. We find a momentum operator p̃ such that p̃ψv = mvψv, and go on to consider
whether we can regard the ψv as basis states of the Schrödinger equation rather than the usual
plane wave solutions which are spread out over all space.

2. The momentum operator p̃

In this section we put t = 0 so that the origin is at the wavepacket centre, and

ψv(t=0) = sin(mcr)

r
eimv·r. (8)

Then (
1

r
∇r

)(
sin(mcr)

r
eimv·r

)
= ip

sin(mcr)

r
eimv·r + mcr̂

cos(mcr)

r
eimv·r (9)

where r̂ ≡ r/r , which cannot immediately be resolved into an eigenvalue equation due to the
cosine function on the rhs instead of a sine function. As is well known the Hilbert transform
operator H defined by

g(x) = Hf (x) = 1

π

∫ ∞

−∞

f (t)

t − x
dt (10)

exchanges cosine and sine functions, as

Heiλx = i sgn(λ) eiλx.

We will adapt the Hilbert transform operator to 3D space by integrating along the entire axis
through the origin and r, but we cannot simply follow (10) and write g(r, θ, φ) = Hf (r, θ, φ)

because r ≡ |r| is non-negative. We will use the parity operator

Pf (x) ≡ f (−x)

to supply the negative part in the integration range of (10).

3
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2.1. The operators H±

First we note that (10) can be written as

Hf (x) = 1

π

∫ ∞

0

(
f (t)

t − x
− f (−t)

t + x

)
dt

= 1

π
x

∫ ∞

0

f (t) + f (−t)

t2 − x2
dt +

1

π

∫ ∞

0
t
f (t) − f (−t)

t2 − x2
dt

≡ Hefe(x) + Hofo(x) (11)

where fe(x), fo(x) are the even, odd parts of f (x) which we can write in terms of the projection
operators P±:

fe(x) ≡ P+f (x) ≡ 1 + P
2

f (x), fo(x) ≡ P−f (x) ≡ 1 − P
2

f (x), (12)

and He,Ho (known as the Hilbert transforms of even/odd functions) are defined

Hef (x) = 2x

π

∫ ∞

0

f (t)

t2 − x2
dt, Hof (x) = 2

π

∫ ∞

0

tf (t)

t2 − x2
dt. (13)

Returning to (11) we can write H in terms of He,Ho and P± as follows:

H = HeP+ + HoP−. (14)

By a simple extension of (11)–(14) we can define the following operators H± valid in 3D
space:

H+f (r, θ, φ) ≡ (HeP+ + HoP−)f (r, θ, φ)

H−f (r, θ, φ) ≡ (HeP− + HoP+)f (r, θ, φ)
(15)

where Pf (r, θ, φ) = f (r, π − θ, φ + π),

Hef (r, θ, φ) ≡ 2r

π

∫ ∞

0

f (t, θ, φ)

t2 − r2
dt, Hof (r, θ, φ) ≡ 2

π

∫ ∞

0

tf (t, θ, φ)

t2 − r2
dt; (16)

equivalently Pf (r) = f (−r),

Hef (r) = 2

π

∫ ∞

0

f (λr)
λ2 − 1

dλ, Hof (r) = 2

π

∫ ∞

0

λf (λr)
λ2 − 1

dλ.

Note that the parity operator commutes with the He,Ho operators of (16).
We now verify that {cos(mcr) eimv·r} = H−{sin(mcr) eimv·r} which result will enable us

to construct the momentum operator. First we note the identities

He cos(λr) = −sgn(λ) sin(λr), Ho sin(λr) = sgn(λ) cos(λr) (17)

then

H−{sin(mcr) eimv·r}
≡ (HeP− + HoP+){sin(mcr) eimv·r}
= He{i sin(mcr) sin(mv·r)} + Ho{sin(mcr) cos(mv·r)}
= 1

2 [iHe{cos({mc − mv·r̂}r) − cos({mc + mv·r̂}r)}
+Ho{sin({mc + mv·r̂}r) + sin({mc − mv·r̂}r)}]

4
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= 1
2 [−i sin({mc − mv·r̂}r) + i sin({mc + mv·r̂}r)}
+ cos({mc + mv·r̂}r) + cos({mc − mv·r̂}r)]

= 1
2 [ei(mcr+mv·r) + e−i(mcr−mv·r)]

= cos(mcr) eimv·r (18)

as stated. In the working above we have used the fact that the factors {mc±mv·r̂} multiplying
r are positive definite for |v| < c. We now substitute (18) into (8) obtaining(

1

r
∇r

)(
sin(mcr)

r
eimv·r

)
= ip

(
sin(mcr

)
r

eimv·r
)

+ mc
r̂
r
H−r

(
sin(mcr)

r
eimv·r

)

− i
1

r
(∇ − mcr̂H−)rψv(t = 0) = pψv(t = 0)

so that the momentum operator is

p̃ = −i
1

r
(∇ − mcr̂H−)r = −i∇ − i

r̂
r

− i
mcr̂
r

H−r. (19)

3. That p̃ is symmetric in 〈φ|r2|ψ〉
Inspection of the time (t = 0) wavefunctions (8) suggests that ψv, ψv′ may be orthogonal in
the r2 inner product space

〈φ|r2|ψ〉 = 〈rφ|rψ〉 ≡
∫

(r2φ∗ψ) d3r. (20)

We first prove this orthogonality, and then go on to show that the p̃ operator of (19) is symmetric
with respect to 〈φ|r2|ψ〉.

We recall the well-known identity∫
ei(p−p′)·r d3r = (2π)3δ(p − p′) (21)

where the rhs is the 3D delta function. Then the inner product 〈ψv′ |r2|ψv〉 of two wavepackets
momentarily coinciding is

〈rψv′ |rψv〉 =
∫

sin2(mcr) ei(p−p′)·r d3r

= 1

2

∫
(ei(p−p′)·r − cos(2mcr) ei(p−p′)·r) d3r

= π

∫∫
(ei|p−p′ |r cos θ − cos(2mcr) ei|p−p′|r cos θ )d(−cos θ)r2 dr

= 2π

|p − p′|
∫

(r sin(|p − p′|r) − r cos(2mcr) sin(|p − p′|r)) dr

= π

|p − p′|
∫

(2r sin(|p − p′|r) − r sin[(|p − p′| + 2mc)r]

− r sin[(|p − p′| − 2mc)r]) dr. (22)

We know from (21) that the value of the first integral in (22) is zero for |p − p′| �= 0, which
implies the improper integral identity∫ ∞

0
r sin(λr) dr = 0 for λ �= 0.

5
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And as (|p − p′| ± 2mc) �= 0 for |v|, |v′| < c, the second and third integrals of (22) are zero,
and

〈ψv′ |r2|ψv〉 = 〈rψv′ |rψv〉 = 4π3δ(p − p′). (23)

The result (23) may be used to project out the ψv′ component in a superposition of ψv.

As the ψv are eigenfunctions of the p̃ operator of (19), the result (23) implies that p̃ is
symmetric with respect to the r2 inner product space (20), which we will now verify. The first
component of p̃ is

(−i 1
r
∇r

) = (−i∇ − ir̂/r), and〈
φ|r2| − i

1

r
∇rψ

〉
= 〈rφ| − i∇rψ〉 = 〈−i∇rφ|rψ〉 =

〈
− i

1

r
∇rφ|r2|ψ

〉
. (24)

The remaining component of p̃ is the operator
(
imc 1

r
r̂H−r

)
, and〈

φ|r2|i 1

r
r̂H−rψ

〉
= 〈rφ|ir̂H−rψ〉. (25)

With the substitutions

� ≡ rψ, 	 ≡ rφ (26)

then (25) is 〈	|ir̂H−�〉. In the working below we write � = �(r), the angular variables θ, φ

being understood, and d
 ≡ sin θ dθ dφ:

〈	|ir̂H−�〉 ≡
∫∫

	∗(r)

[
ir̂

1

π

∫ ∞

0

(
1

t − r
�(t) +

1

t + r
P�(t)

)
dt

]
r2 dr d


= 1

π

∫



∫ ∞

r=0

∫ ∞

t=0
ir̂	∗(r)

(
t2 − (t2 − r2)

t − r
�(t)

+
t2 − (t2 − r2)

t + r
P�(t)

)
dt dr d


=
∫




∫ ∞

t=0

[
1

π

∫ ∞

r=0

(
− 1

r − t
ir̂	∗(r) +

1

r + t
Pir̂	∗(r)

)
dr

]
t2�(t) dt d


− 1

π

∫



∫ ∞

r=0

∫ ∞

t=0
ir̂[(t + r)	∗(r)�(t) + (t − r)	∗(r)P�(t)] dt dr d


=
∫




∫ ∞

0

[
ir̂

1

π

∫ ∞

r=0

(
− 1

r − t
	∗(r) − 1

r + t
P	∗(r)

)
dr

]
t2�(t) dt d


− 1

π

∫



ir̂

{[ ∫ ∞

0
	∗(r)dr

][ ∫ ∞

0
(t�(t) + tP�(t)) dt

]}
d


− 1

π

∫



ir̂

{[ ∫ ∞

0
r	∗(r) dr

][ ∫ ∞

0
(�(t) − P�(t)) dt

]}
d


= 〈ir̂H−	|�〉 − 1

π

∫



ir̂

{[ ∫ ∞

0
(	∗(r) − P	∗(r)) dr

][ ∫ ∞

0
t�(t)dt

]}
d


− 1

π

∫



ir̂

{[ ∫ ∞

0
r	∗(r) dr

][ ∫ ∞

0
(�(t) − P�(t)) dt

]}
d
. (27)

6
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In the working above we have used the self-adjoint property of P , and that P anticommutes
with r̂. We see that if �,	 satisfy the boundary condition

I� ≡
∫ ∞

0
(�(r) − P�(r)) dr = 0 (28)

then

〈	|ir̂H−�〉 = 〈ir̂H−	|�〉, (29)

and (ir̂H−)† = (ir̂H−), so subject to (28) the p̃ operator is symmetric with respect to the inner
product space 〈φ|r2|ψ〉. The boundary condition (28) is satisfied by the �v as

I�v ≡ Irψv = i
∫ ∞

0
sin(mcr) sin(m(v·r̂)r) dr = iπ

m
δ(c − v · r̂)

which is zero for v < c. On this and other occasions in our working we have found the
necessity of the light speed limit for v.

4. The Fourier transform of ψv

We can express ψv as a superposition of plane waves: the Fourier transform φv(k) of ψv may
be found via the following steps. With

F[φ(k)] ≡ 1

(2π)3/2

∫
φ(k) eik·rdk = ψ(r)

and the 3D Fourier transform of spherically symmetric functions

F[φ(k)] =
√

2

π

1

r

∫
φ(k) sin(kr)k dk = ψ(r),

then

F
[√

π

2

δ(k − mc)

mc

]
= sin(mcr)

r

F
[√

π

2

δ(|k − mv| − mc)

mc

]
= sin(mcr)

r
eimv·r

F
[√

π

2
e−itv·k δ(|k − mv| − mc)

mc

]
= sin(mc|r − vt |)

|r − vt | eimv·(r−vt)

F[φv] ≡ F
[√

π

2
e−itv·k−im(c2−v2)t/2 δ(|k − mv| − mc)

mc

]

= sin(mc|r − vt |)
|r − vt | eimv·(r−vt) e−im(c2−v2)t/2 ≡ ψv, (30)

so that the momentum space wavefunction φv(k) is

φv =
√

π

2
e−itv·k−im(c2−v2)t/2 δ(|k − mv| − mc)

mc

=
√

π

2
e−ik2t/2m δ(|k − mv| − mc)

mc
. (31)

For the last step of working, note that the delta function δ(|k − mv| − mc) is non-zero on
the surface k2 − 2m(v · k) + m2v2 − m2c2 = 0. This surface is a sphere of radius mc whose
centre is displaced from the origin by mv. Assuming that |v| < c the origin is inside this

7
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displaced sphere; so like the stationary wavefunction ψv is a superposition of plane waves
from all directions.

While we have been dealing with the usual three-dimensional case, the φv(k) of (31) is
applicable to n dimensions with k ≡ (k1, . . . , kn), v ≡ (v1, . . . , vn), then the corresponding
ψv(n) solution to Schrödinger’s equation in n dimensions can be shown to be

ψv(n) =
(

π

2mc|r − vt |
) n

2 −1

J n
2 −1(mc|r − vt |) eimv·(r−vt) e−im(c2−v2)t/2 (32)

with r ≡ (r1, . . . , rn), and J is the Bessel function. The one- and two-dimensional cases are

ψv(1) = 2 cos(mc(r − vt)) eimv(r−vt) e−im(c2−v2)t/2

ψv(2) = J0(mc|r − vt |) eimv·(r−vt) e−im(c2−v2)t/2.

5. Outlook

Our strategy in this paper has been to look for non-dispersive, constant velocity solutions ψv

of the Schrödinger equation, then we find a momentum operator such that p̃ψv = mvψv. It
is a postulate of quantum mechanics that dynamical variables can be represented by operators
whose eigenfunctions have definite values of that variable, and in our case the wavepacket ψv

clearly does has momentum mv, being in the form f (r − vt) multiplied by a phase factor.
In contrast the plane wave with momentum p has no such obvious velocity. Secondly the p̃
operator allows a particle to both be localized and in a definite state of momentum, instead
of being spread out over all space. Our approach implies that the Schrödinger equation is
fundamental whereas the usual momentum operator (−i∇) is not. In this context we note
that the Schrödinger equation anteceded the momentum operator, being derived from classical
variational principles (for an interesting discussion of Schrödinger’s derivation, see chapter 3
of [5] and references therein).

The orthogonality relation (23) suggests the ψv as alternative basis states rather than the
usual plane waves, however the price to be paid is the greater complexity of the p̃ operator, and
it only has the eigenfunction property when the origin is at the wavepacket centre. Other non-
dispersive solutions of (1) can be constructed, we introduce a particular class in the appendix,
but we conjecture that the solutions (2) are unique in that they are form invariant under a
Galileo boost transformation Gu

Guψ(r, t) ≡ ψ(r − ut, t) eimu·r−imu2t/2,

as by inspection

Guψv = ψv+u.

We recall from section 1 that this identity can be used to derive the ψv from the stationary
wavefunction ψ0.

Acknowledgments
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Appendix

A further class of solutions to Schrödinger’s equation is

χv = sin(mv0|r − vt |)
|r − vt | eimv·(r−vt) e−imc2t/2 (A.1)

8
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with v0 ≡ (c2 + v2)1/2. That the χv is a solution of (1) may be verified similarly to the
methods of section 1. Note that mcv0 = mc(c2 + v2)1/2 ≈ mc2 + 1

2mv2 for v 
 c, which is
the non-relativistic energy 1

2mv2 plus a ‘rest energy’ mc2.

At time t = 0

χv = sin(mv0r)

r
eimv·r (A.2)

which is an eigenfunction of a momentum operator p̆ with eigenvalue p = mv, which we
will now demonstrate. First note the following identities, which can be verified by direct
calculation:[−(∂rr)∇ − 1

2 r(m2c2 − ∇2)
]{sin(p0r) eip·r} = −i(∂rr)p{sin(p0r) eip·r} (A.3)

(
1
2m2c2r + a0

){sin(p0r) eip·r} = −(∂rr)p
0{cos(p0r) eip·r}

= −(∂rr)p
0H−{sin(p0r) eip·r} (A.4)

where the operator (∂rr) is short for (r∂r + 1) and p0 ≡ mv0. We define the operators a, and
a0 with (a0)2 = a2:

(a0, a) = (− 1
2 r∇2,−(∂rr)∇ + 1

2 r∇2
)
, (A.5)

the operator a is related to the Runge–Lenz operator used for solving the Schrödinger equation
with a Coulomb potential, its components commute with each other. Further properties of
(a0, a) are listed in [7]. We define the dilation operator D and its inverse:

D ≡ −i∂rr = −i(r∂r + 1), D−1f (r, θ, φ) = i

r

∫ r

0
f (t, θ, φ) dt. (A.6)

We can now write (A.3), (A.4) as(− 1
2m2c2r + a

)
rχv = Drpχv (A.7)(

1
2m2c2r + a0

)
rχv = −iDH−rp0χv (A.8)

and multiplying from the left by 1
r
D−1 we obtain

p̆χv ≡ 1
r
D−1

(− 1
2m2c2r + a

)
rχv = pχv, (A.9)

p̆0χv ≡ −i 1
r
H+D

−1
(

1
2m2c2r + a0

)
rχv = p0χv (A.10)

where in the last step we have used H+H− = −1.

As p02 = m2 + p2 these operators have relativistic character, also the Galileo
transformation does not preserve the form of χv. For these reasons we think these operators are
more suited to the relativistic case: elsewhere we will consider a modified χv which satisfies
a relativistic evolution equation.
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